ONE WEEK COURSE IN THE

PRACTICAL DESIGN AND PRODUCTION OF OPTICAL THIN FILMS

Why This Course/Objective

Advanced optical thin films are being used increasingly in communications, optical systems, and light control and collection applications. The sophistication of the optical coating industry is advancing rapidly to meet ever increasing demands for performance and production capability. New viewpoints, equipment, and processes are available to support advanced capability and efficiency. Objectives of this course include: to provide increased knowledge and understanding of the many practical aspects of optical coating design and production, to give hands-on design experience in the techniques and principles discussed, and to elucidate techniques and processes that are commonly successful in meeting optical coating needs.

Benefits for You

This course will enable you to:
* firmly grasp, visualize, and use design principles and graphical methods in thin film design
* gain hands-on computer aided design experience in applying the concepts of this course
* understand Fourier thin film synthesis and compare rugate and discrete layer designs
* estimate what can be achieved before starting a design
*solve practical coating design problems in class
*select appropriate optical coating equipment to support the needed processes
*be familiar with the properties and process know-how for common optical coating materials
*learn about DOE process development techniques and the use of various ion/plasma sources
*understand various monitoring and control strategies and their advantages and limitations

Valuable Take-home Materials

Mr. Willey's books the Practical Design of Optical Thin Films and Practical Production of Optical Thin Films and software for special calculations and graphics will be provided along with supplementary class notes, and the free version of the internationally used FilmStar design and evaluation software by Fred Goldstein. These can be valuable for future reference.

Who Should Attend, Who Will Benefit

The course is intended to be valuable to new coating engineers, scientists, technical managers, and technicians as well as seasoned thin film scientists who are involved in design, development, and production of optical thin films. Basic principles are laid out from the beginning for those new to the field, but the evolution of the topics then moves into material and techniques useful to even the more experienced practitioners. No extensive background in mathematics or physics is required; extensive graphical illustrations are used.
Course Instructor

Ron Willey is a consultant with over 40 years in the fields of thin film and optical system design, development, and production. He is a graduate of MIT in optical instrumentation and has an MS in computer science from FIT. He has lead groups in optical coating and instrumentation development and production at Martin Marietta, Raytheon, Opto_Mechanik, and LexaLite International. He is very experienced in practical thin films design, process development, and the application of industrial Design Of Experiment methodology (DOE). He holds four patents and has published many papers on optical coating, optical design, and economics of optical tolerances. He is a Fellow of the SPIE and the Optical Society of America.

Course Outline

(Taken directly from the Table of Contents of the Two Books used in the Course.)

MONDAY

Fundamentals of Thin Film Optics 1
1.1. INTRODUCTION 1
1.2. REVIEW OF THIN FILM OPTICS PRINCIPLES 5
1.3. REFLECTANCE DIAGRAMS AND DESIGN 16
1.3.1. Low Reflectors, Antireflection Coatings 19
1.3.2. Why Are Bubbles Colored? 29
1.3.3. Back Of The Envelope (BOTE) Calculations 32
1.3.4. Three-Layer AR Coating on Germanium, Example 33
1.3.5. Example Four-Layer Broad Band AR Coating in the Visible 38
1.3.6. Medium Reflectors and Beamsplitters 40
1.3.7. High Reflectors and Building Blocks 41
1.3.8. Crystal Coatings 44
1.3.9. Physical Thickness versus Optical Thickness 47
1.4. REFERENCES 47
Applications 49
2.1. INTRODUCTION 49
2.2. DESIGNING DIELECTRIC MIRRORS 49
2.3. ESTIMATING BANDPASS AND BLOCKER COATINGS 58
2.3.1. Estimating the Width of a Blocking Band 58
2.3.2. Estimating the Optical Density of a Blocking Band 60
2.3.3. Estimating the Number of Layers and Thickness Needed 61
2.4. DICHROIC REFLECTION COATINGS 62
2.5. NARROW BANDPASS FILTERS 65
2.5.1. Behavior of a High Index Slab 66
2.5.2. High Reflectors 67
2.5.3. NBP Wavelength Effects as Seen on Reflectance Diagrams 74
2.5.4. Dense Wavelength Division Multiplexing (DWDM) Filters 77
2.6. ESTIMATING DWDM FILTERS 82
2.6.1. Beamsplitters 86
2.7. ANGLES AND POLARIZATION 87
2.7.1. Wavelength Shift with Angle of Incidence 87
2.7.2. Polarization Effects of Angle of Incidence 88
2.7.3. Tilting for Tuning the Wavelength of a Filter 91
2.7.4. Polarization as Seen in Reflectance Amplitude Diagrams 93
2.7.5. Polarizing Beamsplitters 95
2.7.6. Non-Polarizing Beamsplitters 101
2.8. ADDITIONAL VIEWS VIA GRAPHICS AND PLOTS 106
4.4. RUGATES AND EUV/SOFT X-RAY SPECTRAL REGION 217
4.5. QUANTIZATION EFFECTS IN EUV/X-RAY MIRRORS 229
4.6. FOURIER VIEWPOINT OF OPTICAL COATINGS 235
 4.6.1. Fourier Concepts 235
 4.6.2. Background 237
 4.6.3. Some Limitations 245
 4.6.4. A Method to Determine the Multiple Reflections 251
 4.6.5. Fourier Summary 253
4.7. ESTIMATING EDGE FILTER PASSBAND REFLECTION 254
 4.7.1. Procedure 258
 4.7.2. Equations 260
 4.7.3. Bandwidth Limitations on SWP Filters 263
 4.7.4. Design Limitations of QWOT Stack SWP Filters 264
 4.7.5. When Wider Passbands Are Needed for SWP Edge Filters 265
 4.7.6. Optical Density and Band Edge Steepness 270
 4.7.7. Squareness Between Edge and Passband 272
 4.7.8. Wide Passband SWP Filters Conclusions 272
4.8. REFERENCES 274

5.1. INTRODUCTION 277
5.2. SPECTROPHOTOMETERS 278
 5.2.1 Dispersive Spectrometers and Spectrophotometers 278
 5.2.2 Interferometric Spectrometers and Spectrophotometers 282
 5.2.3 Fourier Transform Infrared versus Grating Instruments 291
 5.2.4 Types of Reflecting Surfaces 296
 5.2.5 The Original Recording Spectrophotometer 297
 5.2.6 Measuring Absorption and Scattering 299
5.3. MEASURING %TRANSMITTANCE & %REFLECTANCE 301
 5.3.1. Measuring Transmittance 301
 5.3.2. Potential Measurement Problems 303
5.3.3. Measuring Reflectance 305
5.3.4. Checking Linearity of Reflectance Measurements 314
5.3.5. Other Reflectance Measurements 318
5.3.6. Photodiode Array Spectrometers 322
5.4. DENSITY or HUMIDITY SHIFT MEASUREMENT 325
5.5. CAVITY RING-DOWN MEASUREMENTS 328
5.6. COLOR MEASUREMENTS 330
5.6.1. Typical Color Filters 331
5.6.2. Plotting Colors on a C.I.E. 1931 and 1976 Diagrams 332
5.6.3. Comparing Gels and Optical Thin Film Coatings 338
5.6.4. Tolerancing the Production of Color Filters 340
5.6.5. Tolerancing and MacAdam Ellipses 341
5.6.6. Illuminants and Metameric Matches 342
5.6.7. Caution With Respect to Light Sources 344
5.7. REFERENCES 347

Finding Indices and Tooling Factors 349

6.1 INDEX & THICKNESS DETERMINATION 349
6.1.1. Index of Refraction Determination 351
6.1.2. Fitting Values for High Index Materials 351
6.1.3. Piecewise Fitting Using $NK in FilmStar 364
6.1.4. Fitting Values for Low Index Materials 366
6.1.5. Using the FilmStar Software Package for Index Fitting 368
6.2. ADVANCED USES OF SOFTWARE 377
6.2.1. Macro Commands and FilmStar Basic 377
6.2.2. Workbooks 381
6.2.3. “Manual” Fitting and Automation Assistance 382
6.2.4. Manually Tuning-In the Thickness of a Four-Layer AR 383
6.2.5. More Automated Tuning-In Via Macro and FilmStar Basic 384
6.2.6. More Automated Piecewise Fitting Via FilmStar Basic 385
6.3. REFERENCES 387

Designing Coatings 388

7.1. INTRODUCTION 388
7.2. ANTIREFLECTION COATINGS 388
7.2.1. Procedure 389
7.2.2. The Formula 390
7.2.3. Results 392
7.2.4. Berlin AR Design Contest 396
7.2.5. Results of Further Study 399
7.2.6. Estimating the Number of Layers 404
7.2.7. Looking Outside the Box 406
7.2.8. Reverse Engineering Using Number of Ripples in Band 410
7.2.9. Summary of Antireflection Coating Estimation 410
7.3. OPTIMIZATION 412
7.3.1. Performance Goals and Weightings 412
7.3.2. Global versus Local Minima 414
7.3.3. Some Optimizing Concepts 415
7.3.4. Constraints 419
7.4. DESIGNING A VERY BROAD BAND AR 433
7.4.1. Specific Example 434
7.4.2. Design Extension to Three Bands 442
7.5. OTHER EXAMPLES 445
7.6. DESIGNING A FILTER FOR 6P 3D COLOR 449
7.7. REFERENCES 458

WEDNESDAY

Preface to the Fifth Edition iii
Contents v
1 1
Typical Equipment for Optical Coating Production 1
1.1. INTRODUCTION 1
1.2. GENERAL REQUIREMENTS 2
1.2.1. The Vacuum and Pumping Systems 4
1.2.2. What is in a Vacuum? 42
1.2.3. Another Way Than RGA 47
1.2.4. Deposition Sources 51
1.2.5. Fixturing and Uniformity 94
1.2.6. Temperature Control 109
1.2.7. Process Control 114
1.3. TYPICAL EQUIPMENT 117
1.4. ALTERNATIVE APPROACHES 122
1.5. UTILITIES 127
1.6. REFERENCES 131
2 139

Materials and Processes 139
2.1. PROCESS KNOW-HOW 139
2.1.1. Film Growth Models and Observations 140
2.1.2. Chiral and Sculptured Coatings 172
2.1.3. Stress in Coatings 173
2.1.4. Measurement of Stress in Coatings 178
2.1.5. Laser Damage in Coatings 198
2.1.6. Rain Erosion of Coatings 202
2.1.7. Transparent Conductive Oxides (TCO) 203
2.2. MATERIALS 204
2.2.1. Dissociation 206
2.2.2. Some Specific Materials 207
2.2.3. Aluminum Processes, Fighting Water Vapor 207
2.2.4. Very Thin Silver Layers 221
2.2.5. Silicon Compounds 226
2.2.6. Titanium Oxides, TiO through TiO2 236
2.2.7. Magnesium Compounds 251
2.2.8. Germanium 268
2.2.9. Thorium Fluoride 271
2.2.10. Zinc Sulfide 272
2.2.11. Zinc Selenide 276
2.2.12. Lead Telluride 276
2.2.13. Hafnium Compounds 277
2.2.14. Niobium and Neodymium Compounds 279
2.2.15. Yttrium Compounds 280
2.2.16. Zirconium Dioxide 281
2.2.17. Tantalum Pentoxide 287
2.2.18. Aluminum Compounds 288
2.2.19. Cerium Compounds 291
2.2.20. Scandium Oxide 292
2.2.21. Zinc Oxide 293
2.2.22. Lead Fluoride 294
2.2.23. Calcium Fluoride 294
2.2.24. Barium Fluoride 295
2.2.25. Ytterbium Fluoride 296
THURSDAY

Thin Film Monitoring and Control 409
3.1. OVERVIEW 409
3.2. SIMPLE MONITORS 415
3.2.1. "Eyeball" and Measured Charge 416
3.2.2. Optical Thickness Monitors 420
3.2.3. Automation versus Manual Monitoring 424
3.2.4. Spectral Requirement Factors 425
3.3. CRYSTAL MONITORS 432
3.3.1. Crystal Thickness Controllers 432
3.3.2. Precision versus Accuracy 433
3.4. CRYSTAL MONITOR CONTROLLER SETUP 434
3.4.1. The Problem 435
3.4.2. The Solution 437
3.4.3. Setting Ramp and Soak Times. 437
3.4.4. PID Settings 438
3.4.5. Soak Level Before The Shutter Opens 442
3.4.6. Control Delay After Shutter Opens 442
3.4.7. Adhesion Failures on the Crystal, Etc. 444
3.4.8. Crystal Control of Eyeglass Coatings 448
3.4.9. Calibrations and Variations 452
3.4.10. Tooling Factors 453
3.4.11. Variations 454
3.5. OPTICAL MONITORING 456
3.5.1. Effect of Rate Variations 456
3.5.2. Optical Monitor with the Method of Schroedter 456
3.5.3. Simulation of Four Optical Monitoring Strategies 458
3.5.4. Level Cut Monitoring 459
3.5.5. Turning Point Monitoring 463
3.5.6. Software Examples 466
3.5.7. Termination Point Simulation 470
3.5.8. Noise Effects 472
3.5.9. Relative Merits of Four Strategies 480
3.5.10. NBP Filter Comparison of Monitoring Strategies 480
3.5.11. Special "Multichroic" Beamsplitter, Manual “POEM” 481
3.16.4. Total Error Sensitivity of the Average Transmission 586
3.16.5. Error Compensation in the Monitoring 587
3.17. CONSTANT LEVEL MONITORING 592
3.17.1. Sensitivity and Correction Strategies 594
3.17.2. Sensitivity versus Layer Termination Point 594
3.17.3. Sensitivity Versus g-Value 596
3.17.4. Constant Level Monitoring Strategies 600
3.18. PASSIVE VERSUS ACTIVE, STEERING 605
3.18.1. Passive Versus Active Optical Monitoring 605
3.18.2. Steering the Monitoring Signal Result 605
3.18.3. Departures from Ideal 605
3.18.4. Steering Concept 606
3.18.5. Algorithm 607
3.18.6. More on Photometrics 609
3.18.7. Example Case 609
3.18.8. Lessons Learned 609
3.18.9. Results 612
3.18.10. A Problem Case 613
3.19. PRECOATED MONITOR CHIPS 614
3.19.1. Eliminating the Precoated Chip 614
3.19.2. General Design Procedure 616
3.19.3. Specific Design Procedure 616
3.19.4. Results of the Procedure 620
3.20. OTHER EFFECTS ON OPTICAL MONITORS 622
3.20.1. Error Due to Drift in the Monitoring Wavelength 622
3.20.2. Effects of Thin Film Wedge on the Monitor Chip 623
3.20.3. Error Due to Width of the Monitoring Passband 625
3.21. DESENSITIZING FOR %T/%R ERRORS 627
3.22. OVERCOMING ABSORPTION 637
3.23. DIRECT DOUBLE BEAM MONITORING 640
3.23.1. Single Beam versus Double Beam Optical Monitors 640
3.23.2. Intermittent Monitoring 640
3.24. ELLIPSOMETRIC MONITORING 643
3.25. BROAD BAND OPTICAL MONITORING 649
3.26. ADVICE, FOR WHAT IT IS WORTH 656
3.27. SUMMARY 657
3.28. REFERENCES 660

FRIDAY

Process Development 668
4.1. INTRODUCTION 668
4.2. DESIGN OF EXPERIMENTS METHODOLOGY 672
4.2.1. Process Flow Diagram 673
4.2.2. Cause-and-Effect Diagram 673
4.2.3. Control, Noise, or Experiment 674
4.2.4. Screening and Pareto Ranking 676
4.2.5. Standard Operating Procedures 677
4.3. DESIGN OF THE EXPERIMENTS: EXAMPLES 677
4.3.1. A Central Composite Design for Aluminizing 679
4.3.2. A Box-Behnken Design for IAD Deposition of TiO2 684
4.4. REAL LIFE EXAMPLE PROBLEM SOLVING 691
4.5. ANOTHER REAL LIFE EXAMPLE 702
4.6. SUMMARY 710
4.7. REFERENCES 711

(UPDATED 9-3-2019)